194 research outputs found

    Operation of a Stark decelerator with optimum acceptance

    Get PDF
    With a Stark decelerator, beams of neutral polar molecules can be accelerated, guided at a constant velocity, or decelerated. The effectiveness of this process is determined by the 6D volume in phase space from which molecules are accepted by the Stark decelerator. Couplings between the longitudinal and transverse motion of the molecules in the decelerator can reduce this acceptance. These couplings are nearly absent when the decelerator operates such that only every third electric field stage is used for deceleration, while extra transverse focusing is provided by the intermediate stages. For many applications, the acceptance of a Stark decelerator in this so-called s=3s=3 mode significantly exceeds that of a decelerator in the conventionally used (s=1s=1) mode. This has been experimentally verified by passing a beam of OH radicals through a 2.6 meter long Stark decelerator. The experiments are in quantitative agreement with the results of trajectory calculations, and can qualitatively be explained with a simple model for the 6D acceptance. These results imply that the 6D acceptance of a Stark decelerator in the s=3s=3 mode of operation approaches the optimum value, i.e. the value that is obtained when any couplings are neglected.Comment: 13 pages, 11 figure

    A Limited Role for the Cell Cycle Regulator Cyclin A1 in Murine Leukemogenesis

    Full text link
    The quest for novel therapeutic targets in acute myeloid leukemia (AML) is still ongoing. One of such targets, cyclin A1, was shown to be overexpressed in AML including AML stem cells. However, the function of cyclin A1 in AML is largely unknown, and the data on its impact on patients´ survival remain controversial. Therefore, we developed a transgenic mouse model of stem cell-directed inducible cyclin A1 overexpression and crossed these mice with PML-RARα-knockin mice, which develop an AML M3-like phenotype. To observe the effects of cyclin A1 loss-of-function, we also crossed PML-RARα-knockin mice to cyclin A1-knockout mice. Neither overexpression nor loss of cyclin A1 significantly altered leukemogenesis in PML-RARα-knockin mice. These findings imply that upregulation of cyclin A1 is not essential for leukemogenesis. Our data suggest that cyclin A1 does not represent a suitable target for AML therapy

    Massive migration from the steppe is a source for Indo-European languages in Europe

    Full text link
    We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost four hundred thousand polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of western and far eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ~8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary, and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ~24,000 year old Siberian6 . By ~6,000-5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred throughout much of Europe, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ~3/4 of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ~3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for the theory of a steppe origin of at least some of the Indo-European languages of Europe

    From cheek swabs to consensus sequences : an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes

    Get PDF
    Background: Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results: Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions: All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources

    Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland

    Get PDF
    Genetic studies of Neolithic and Bronze Age skeletons from Europe have provided evidence for strong population genetic changes at the beginning and the end of the Neolithic period. To further understand the implications of these in Southern Central Europe, we analyze 96 ancient genomes from Switzerland, Southern Germany, and the Alsace region in France, covering the Middle/Late Neolithic to Early Bronze Age. Similar to previously described genetic changes in other parts of Europe from the early 3rd millennium BCE, we detect an arrival of ancestry related to Late Neolithic pastoralists from the Pontic-Caspian steppe in Switzerland as early as 2860-2460 calBCE. Our analyses suggest that this genetic turnover was a complex process lasting almost 1000 years and involved highly genetically structured populations in this region

    Survival of Late Pleisticene Hunter-gatherer ancestry in the Iberian Peninsula

    Get PDF
    The Iberian Peninsula in southwestern Europe represents an important test case for the study of human population movements during prehistoric periods. During the Last Glacial Maximum (LGM), the peninsula formed a periglacial refugium for hunter-gatherers (HGs) and thus served as a potential source for the re-peopling of northern latitudes. The post-LGM genetic signature was previously described as a cline from Western HG (WHG) to Eastern HG (EHG), further shaped by later Holocene expansions from the Near East and the North Pontic steppes. Western and central Europe were dominated by ancestry associated with the 14,000-year-old individual from Villabruna, Italy, which had largely replaced earlier genetic ancestry, represented by 19,000-15,000-year-old individuals associated with the Magdalenian culture. However, little is known about the genetic diversity in southern European refugia, the presence of distinct genetic clusters, and correspondence with geography. Here, we report new genome-wide data from 11 HGs and Neolithic individuals that highlight the late survival of Paleolithic ancestry in Iberia, reported previously in Magdalenian-associated individuals. We show that all Iberian HGs, including the oldest, a 19,000-year-old individual from El Mirón in Spain, carry dual ancestry from both Villabruna and the Magdalenian-related individuals. Thus, our results suggest an early connection between two potential refugia, resulting in a genetic ancestry that survived in later Iberian HGs. Our new genomic data from Iberian Early and Middle Neolithic individuals show that the dual Iberian HG genomic legacy pertains in the peninsula, suggesting that expanding farmers mixed with local HGs

    Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus

    Get PDF
    Here, we report genome-wide data analyses from 110 ancient Near Eastern individuals spanning the Late Neolithic to Late Bronze Age, a period characterized by intense interregional interactions for the Near East. We find that 6th millennium BCE populations of North/Central Anatolia and the Southern Caucasus shared mixed ancestry on a genetic cline that formed during the Neolithic between Western Anatolia and regions in today’s Southern Caucasus/Zagros. During the Late Chalcolithic and/or the Early Bronze Age, more than half of the Northern Levantine gene pool was replaced, while in the rest of Anatolia and the Southern Caucasus, we document genetic continuity with only transient gene flow. Additionally, we reveal a genetically distinct individual within the Late Bronze Age Northern Levant. Overall, our study uncovers multiple scales of population dynamics through time, from extensive admixture during the Neolithic period to long-distance mobility within the globalized societies of the Late Bronze Age. Video Abstrac
    corecore